REPORT No. 261

RESISTANCE AND COOLING POWER OF VARIOUS RADIATORS

By R. H. SMITH

Aerodynamical Laboratory, Bureau of Construction and Repair,

United States Navy

				•			
						•	
				. 6			
				1			
5			·				
	•	,					

REPORT No. 261

RESISTANCE AND COOLING POWER OF VARIOUS RADIATORS

By R. H. SMITH

INTRODUCTION

This report combines the wind-tunnel results of radiator tests made at the Navy Aerodynamical Laboratory in Washington during the summers of 1921, 1925, and 1926, and submitted for publication to the National Advisory Committee for Aeronautics, November 29, 1926. In all, 13 radiators of various types and capacities were given complete tests for figure of merit. Twelve of these were tested for resistance to water flow and a fourteenth radiator was tested for air resistance alone, its heat-dissipating capacity being known. All the tests were conducted in the 8 by 8 foot tunnel, or in its 4 by 8 foot restriction, by the writer and under conditions as nearly the same as possible. That is to say, as far as possible, the general arrangement and condition of the apparatus, the observation intervals, the ratio of water flow per unit of cooling surface, the differential temperatures, and the air speeds were the same for all. Also, for reasons of comparison, the L/D value of 6, which was assumed in the 1921 tests as the L/D of the airplane using the radiator, was also used in the more recent tests.

No attempt is made to enter upon the theory of heat dissipation. Only the actual test results are given and reduced to coefficient form. The precision of the tests as representative of full-flight performance is definitely known only in the case of the HN-2. The McCook Field full-flight performance and the Navy tunnel performance of this radiator agree within about 3 per cent.

Since this full-flight test was made with unusual care and since the wind-tunnel tests on all the radiators were made not only accurately but also at almost full scale, it would seem probable that these tests represent quite accurately the full-flight performances in actual service.

DESCRIPTION OF RADIATORS

Nine radiators of the 13 had cores of the cartridge type whose frontal areas were uniformly 1 foot square. Figure 1 gives the external appearance of one of these radiators and Figures 2 and 3 are close views of core segments of each. Six of these 9 are known as G. and O., 2 as U. S. Cartridge, and 1 as Rome Turney. For the heat-dissipation tests each was equipped with headers of equal frontal area.

With these nine was tested a tenth radiator, known as the Lamblin, composed of evenly spaced radial planes, whose outline was roughly that of a spheroid. The air flowing along the major axis entered at the front end and passed out between the planes. Stream-lined hoops, placed at the front and back, served as water headers as well as strengthening members. Structural data for this radiator as well as for the first nine are given in Table I.

The other three radiators tested for figure of merit were manufactured by the Heinrich Engineering Corporation. One, known as type HN-2 and illustrated in Figure 4, consisted of 230 flat parallel fins three-eighths inch apart, each composed of tubes of 0.007 inch hard drawn copper, flattened to about 0.50 inch by 0.07 inch and tack soldered edge to edge. These fins were supported and connected with the main headers by thin branch headers into which the flat tubes of the fins emptied. At the leading edge there was a shutter so constructed as to fold

into the streamline form of the headers when closed, as in the figure, or to spread over the ends of the fins when open. The approximate external dimensions of this radiator are 30 inches length, 44 inches height, and 9 inches width. It contained about 206 square feet of radiating surface and had empty and full weights of 113 and 173 pounds, respectively.

The other two Heinrich radiators, known as the Heinrich wing radiators, are illustrated in Figures 5 and 6. They consisted of several thin fins extending vertically from the under surface of the wing, each constructed in similar fashion and of like material to those used in the Heinrich stream-line radiator described above. The over-all dimensions of the wing radiator fin was 5 inches width and 31.75 inches length. The two wing radiators differed only in the spacing and the number of the fins; one had 9 fins spaced 1 inch, the other 6, spaced 1.5 inches. Both were attached to a 40 by 36 inch wing of R3C3 section.

The fourteenth radiator, which was tested for air resistance alone, was a Curtis radiator having a 9-inch cartridge core and over-all dimensions of 40 by 12 by 10.75 inches. This

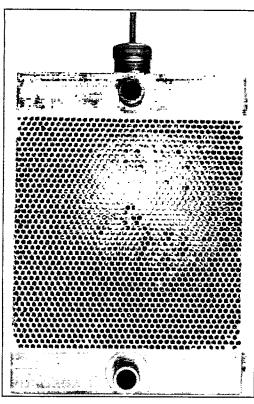
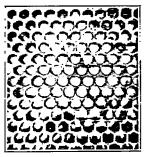


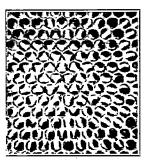
Fig. 1.-Typical test radiator

radiator is illustrated by Figure 7. Its full and empty weights were 159.8 and 105.6 pounds, respectively.

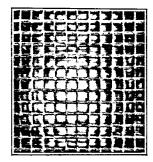
METHOD OF MEASURING AIR RESISTANCE

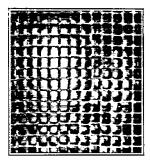

The air resistance of the radiator or radiator core was determined, in most cases, by suspending it by two or more wires attached to its upper edges and running either to the tunnel, ceiling, or through it to the ceiling of the laboratory above. The radiator was then displaced downstream until the displacing force exceeded the maximum air resistance to be measured, then connected to the balance shank by a horizontal tension wire. Lateral motion of the radiator was prevented by two taut cross-tunnel wires with eyelets through which two guide pins, projecting upstream from the upper and lower edges of the radiator, had only slight lateral freedom. The downstream movement of the radiator due to the wind was negligible, hence no correction of the measured resistance for gravity was required. To determine the correction required to reduce the measured resistance by the resistance of the suspending wires, a second run was made with double wires, the additional wires being placed beside the permanent ones and 10 or more

diameters away. The increments of resistance thus found, due to the additional wires, was taken as the resistance of the permanent ones and was subtracted from the radiator and single-wire resistance as the wire correction. The resistance of the horizontal wire was negligible.


Figures 7 and 8 illustrate the Curtis radiator mounted in the tunnel ready for an air-resistance test. All the radiators or radiator cores were tested for air resistance in a similar manner excepting the two wing radiators, for which the method of mounting was necessarily a little different.

The two Heinrich wing radiators were given air-resistance tests assembled to a wing segment. This wing segment was supported in the inverted position at zero degrees angle of attack by four vertical suspension wires, as shown in Figure 5. The wing was restrained from downstream movement in the wind by a compression rod running horizontally from the balance shank to the trailing edge of the wing, and from lateral motion by cross-tunnel wires, both vertical and

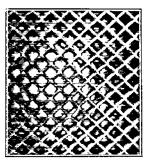

Fig. 2.—Radiator cores

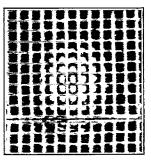


4-inch U.S. Cartridge

5-inch G. & O. 176503

5-inch Rome Turney


2-inch G. & O. 176506


2-inch G. & O. 176505

3-inch G. & O. 176507

5-inch G. & O. 176502

5-inch G. & O. 176504

Fig. 3.—Radiator cores

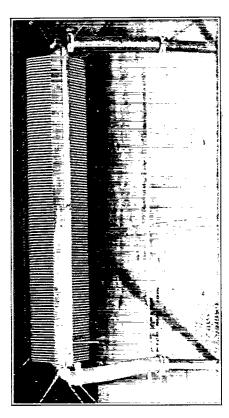


Fig. 4.—Heinrich radiator. Shutter flaps closed

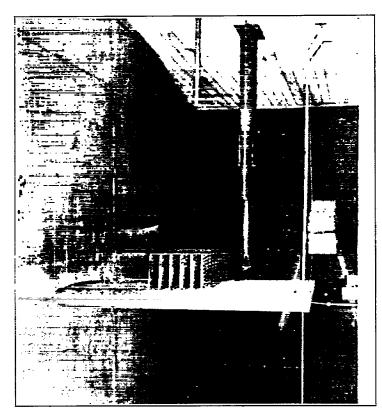


Fig. 5.—Heinrich wing radiator (Resistance mounting)

horizontal, with eyelets at the intersections, through which guide pins, projecting from the leading edge of the wing had only small lateral or vertical freedom. The wing lift, being downward, was borne by the four suspension wires, the drag by the compression rod and the balance shank. The resistance of the radiator was determined from two tests, one made on the radiator and wing assembled as in Figure 5 and the other made on the wing alone. The difference of the resistances was taken as the radiator resistance.

METHOD OF MEASURING RATE OF COOLING

The general appearance of the apparatus for a cooling test is portrayed in Figure 9. The radiator was supported symmetrically in the tunnel throat by 8 taut stay wires, 4 at the top running obliquely up to the tunnel ceiling and 4 at the bottom running obliquely down to the tunnel floor. Hot water pumped from the supply tank, shown to the right, was passed through the Venturi meter, thence through the radiator and the return pipe to the same tank, which was kept at nearly constant temperature by means of a steam-heating coil. Thermometers which were accurately calibrated were carefully inserted to the same depth in the supply and return pipes to measure the temperature of the water upon entering and leaving the radiator, and a third was inserted through the wind-tunnel ceiling to measure the temperature of the general air stream. The rate of flow of the water through the radiator was measured with the standard Venturi. The speed of the undisturbed air approaching the radiator was measured in the usual way with a Pitot tube and manometer, the Pitot tube being placed sufficiently upstream to avoid blanketing by the radiator. The manometer and Pitot tube in this position were calibrated to read the air speeds in the position occupied by the radiator.

MEASUREMENT OF WATER PRESSURE-DROP INSIDE RADIATORS

The pressure difference of the water on entering and leaving the radiator due to various rates of flow was measured by two U-tube manometers, one in each header.

RESULTS OF THE TESTS

Tables I to V, inclusive, show, for the various air speeds noted, the heat dissipation and air resistance, both as measured and in coefficient form, and the ratio of the two expressed in terms of power, which is defined as the figure of merit. Table I contains the results of 13 tests on 10 radiators—the Lamblin radiator was tested at four rates of water flow—the data given for each test being condensed from data as observed and recorded in Tables II, III, and IV. These latter three tables give the data in uncondensed form on the three Heinrich radiators. The six observations for each air speed were taken at two-minute intervals after fairly steady air speed and water flow were obtained and thermal equilibrium was established. Each observation given in Table I is the average of six like observations. Various definitions, constants, and radiator dimensions are supplied in the tables.

The air resistance of the radiators or the radiator cores, as given in the five tables and plotted in Figures 10, 11, and 12 is expressed by the general equation $R = KV^n$ where n varies from 1.84 for the Heinrich wing radiators to 2.13 for the Heinrich stream-line radiator. For the cartridge core types n varies from 1.95 to 2.02.

The figure of merit, which is the final object of the tests, diminishes continuously with increase of velocity. For the cartridge core types the figure of merit decreases roughly with the increase of the velocity squared, while for the wing radiator types it decreases nearly with the increase of the velocity. In the case of the cartridge core types the short tube radiators have greatest merit at low speeds, the long ones at high speeds. This is clearly shown by the U. S. Cartridge radiator with 9-inch tubes. This radiator has the least merit of the nine at low speeds, but is the most efficient at speeds above 130 miles per hour. The figure of merit of the parallel fin type radiator, such as the Heinrich wing radiators, is about the same as that of the best cartridge core at airplane landing speeds, but is distinctly better at the higher air speeds. Figure of merit plots are given in Figures 13, 14, and 15.

The pressure heads required to maintain different mass rates of water flow through the various radiators are given in Tables VI and VII and are plotted in Figures 16 and 17 for all 13 radiators except the Heinrich stream-line radiator, upon which these measurements were omitted. The pressure heads have the general form $p = K v^n$ where, for all cases measured, n varies from 1.86 to 2.00. The formula for pressure drop in terms of turbulent flow speed, commonly given in works on fluid dynamics, is $p = K v^{2.00}$.

The tables and diagrams given in this report may be analyzed in different ways, depending upon the experimental facts desired. No attempt is made here to enter upon such analyses, although the material is presented in a form as complete as possible for this purpose. Likewise no expression of opinion is given touching the suitability of any radiator or type of radiator for any particular use.

REFERENCES

DICKINSON, H. C.; JAMES, W. S.; and KLEINSCHMIDT, R. V. General analysis of airplane radiator problems. National Advisory Committee for Aeronautics. Technical Report No. 59, 1920. (A useful reference for definitions.)

DICKINSON, H. C.; James, W. S.; and Kleinschmidt, R. V. General discussion of test methods for radiators. National Advisory Committee for Aeronautics. Technical Report No. 60, 1920. (A good account of the technique, laboratory apparatus, and working formula used in a thorough radiator test at ground pressure.)

DICKINSON, H. C.; James, W. S.; and Kleinschmidt, H. C. Heat dissipation and other properties of radiators. National Advisory Committee for Aeronautics. Technical Report No. 63, 1920. .(This reference considers how the head resistance and the heat transfer of a radiator are affected by such items as air speed, type of core, and rate of water flow.)

HARPER (3d), D. R., and Brown, W. B. Mathematical equations for heat conduction in fins of air-cooled engines. National Advisory Committee for Aeronautics. Technical Report No. 158, 1923. (This report gives the mathematics required in a theoretical treatment of heat flow.)

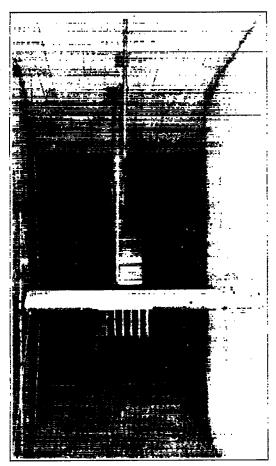


Fig. 6.—Heinrich wing radiator. (Heat dissipation mounting)

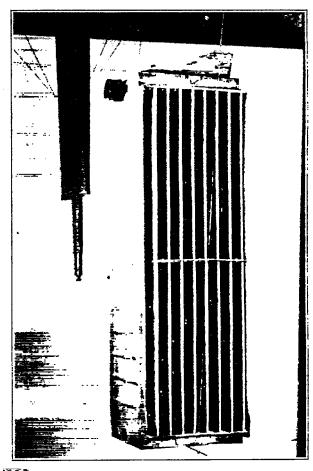
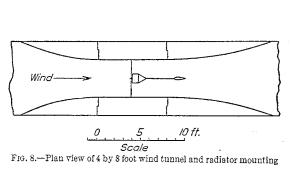



Fig. 7.—Curtiss radiator. Shutter open

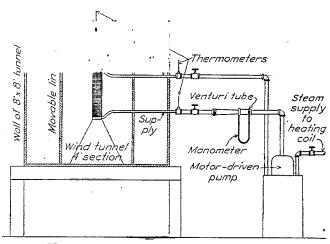


Fig. 9.—Apparatus for thermal test of radiators

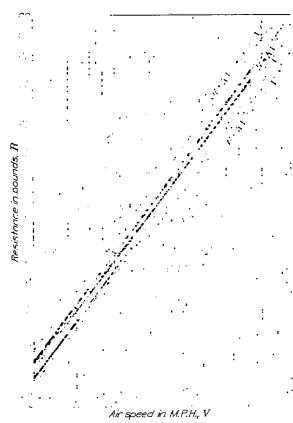


Fig. 10.—Resistance of radiator cores in pounds per square foot frontal area

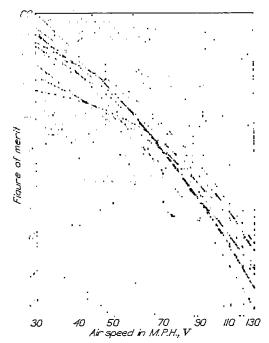


Fig. 13.—Figure of merit versus air speed for various radiator cores $97297 -\!\!-\!\!28 -\!\!-\!\!-\!\!12$

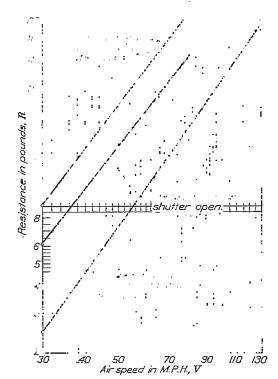


Fig. 11.—Resistance versus air speed of Heinrich and Curtiss radiators

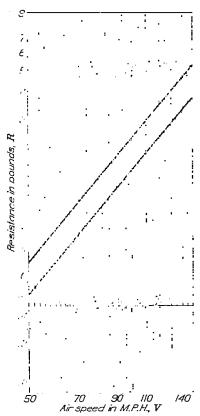


Fig. 12.—Resistance versus air speed of Heinrich wing radiators

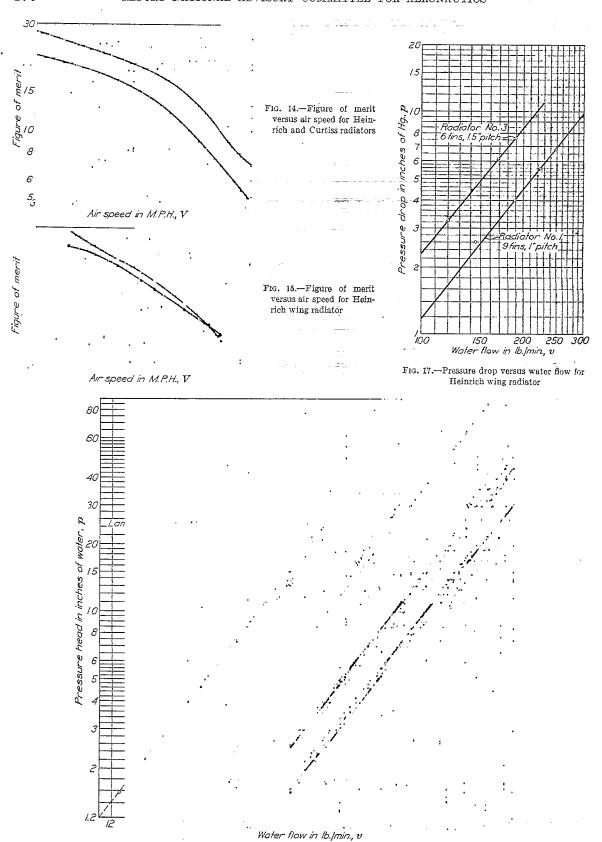


Fig. 16.—Pressure head versus water flow for various radiators

عيد ا ----

TABLE I.—FIGURE OF MERIT

			j	Cempera	iture in	degree	s F.		B.t.u.				HP.		
Name of radiator with miscellaneous data ¹	Air speed M. P. H.	Air in tunnel	Water inlet	Water outlet	Mean	Dif- fer- ence	Mean differ- ence, air and water	Rate of flow, pounds of water per minute	square foot frontal area of	C per 100° differ- ence be- tween mean water and air	Total resist- ance of radiator core, in pounds	Total resistance per square foot of frontal area = R	pated per 100° differ- ence of temper- ature per square foot of frontal area = H	HP, absorbed per square foot of frontal area = P	Figure of merit = H/P
9-inch U. S. Cartridge $W=43.17$ pounds. $A=1.00$ square foot. $D=3.35$ per cent.	30 50 70 90 110 130	97 98 101 103 106 115	185. 5 189. 5 184. 5 186 184 181. 6	178.5 177 168.5 168 165 164	182 183. 2 176. 5 177 174. 5 172. 8	7 12.5 16 18 19 17.6	85 85.2 75.5 74 68.5 57.8	101.5 99.5 98 106 104.5 105	687 1, 202 1, 515 1, 844 1, 919 1, 786	808 1,411 2,008 2,491 2,800 3,090	1. 635 4. 544 8. 927 14. 920 22. 120 31. 170	1. 635 4. 544 8. 927 14. 920 22. 120 31. 170	18. 97 33. 13 47. 15 58. 48 65. 74 72. 55	0,706 1,563 3,007 5,303 8,591 13,285	26.88 21.21 15.67 11.01 7.65 5.46
4-inch U. S. Cartridge $W=21.25$ pounds. $A=0.98$ square foot. $D=4.76$ per cent.	30 50 70 90 110 130	92 93.5 96 98 104 112	184.5 188 182.5 185.5 179 180.4	177 176.5 169.5 170.5 164 166	180.7 182.2 176 178.5 171.5 173.2	7.5 11.5 13 16 15 14.4	88.7 88.7 80 80.5 67.5 61.2	105.8 102.8 107.5 104.5 105	772 1, 150 1, 358 1, 625 1, 530 1, 470	870 -1, 296 1, 697 2, 019 2, 267 2, 402	1.715 4.814 9.567 15,820 23.820 33.470	1.749 4.915 9.758 16,150 24.310 34.150	20. 43 30. 43 39. 85 47. 41 53. 23 56. 40	.422 1.126 2.480 4.722 8.163 13.054	48. 41 27. 01 16. 06 10. 04 6. 52 4. 32
5-inch Rome Turney $W=22.84$ pounds. $A=1.00$ square foot. $D=3.27$ per cent.	30 50 70 90 110 130	96 97 100 104 105 113	183.5 182 183 183 188.5 186.8	177 172 170 169 172.5 172	180. 2 177 176. 5 176 180. 5 179. 4	6.5 10 13 14 16 14.8	84. 2 80 76. 5 72 75. 5 66. 4	106.7 105.2 103.5 105.5 106.7 105.2	671 1,018 1,302 1,429 1,651 1,506	797 1, 273 1, 702 1, 984 2, 188 2, 270	1.485 4.094 7.897 12.900 19.200 26.570	1. 485 4. 094 7. 897 12. 900 19. 200 26. 570	18.71 29.89 39.96 46.58 51.37 53.30	. 423 1. 053 2. 182 4. 008 6. 743 10. 520	44. 25 28. 38 18. 30 11. 62 7. 61 5. 07
5-inch G. & O. 176504 W=24.77 pounds. A=0.99 square feet. D=3.98 per cent.	30 50 70 90 110 130	91 92.5 96 93 103 113	181. 4 182 175 179. 5 181. 5 185	175 171. 5 163. 5 166 167. 5 170	176.6 176.7 169.2 172.7 174.5 177.5	7.3 10.5 11.5 13.5 14 15	85. 6 84. 5 73. 3 73. 7 71. 5 64. 5	102.5 104 106.8 107 103 100	725 1,059 1,191 1,401 1,399 1,414	847 1, 253 1, 625 1, 903 1, 955 2, 192	1. 695 4. 784 9. 447 15. 74 23. 52 33. 07	1.713 4.835 9.54 15.89 23.75 33.40	19. 89 29. 42 38. 16 44. 68 45. 9 51. 47	. 467 L. 194 2. 55 4. 801 8. 171 13	42. 58 24. 65 14. 96 9. 29 5. 62 3. 96
3-inch G. & O. 176507 W=14.75 pounds. A=1.00 square foot. D=3.22 per cent.	30 50 70 90 110 130	100 101 102. 5 106. 5 111 120	184. 5 189 187. 4 185 187. 2 182	178. 5 180 177 174 175. 5 172. 5	181. 5 184. 5 182. 2 179. 5 181. 3 177. 3	60 9 10.4 11 11.7 9.5	81. 5 83. 5 79. 7 73 70. 3 57. 3	102.5 103.8 104 105 103 103.8	595. 904 1,046 1,118 1,166 954	730 1,082 1,312 1,532 1,658 1,665	1. 675 4. 594 8. 977 14. 82 22. 02 30. 87	1. 675 4. 594 8. 977 14. 82 22. 02 30. 87	-17. 14 25. 41 30. 81 25. 97 38. 93 39. 09	.331 .94 2.133 4.142 7.173 11.543	51. 8 27. 04 14. 44 8. 68 5. 43 3. 39
5-inch G, & O.176503 W=22.89 pounds. A=0.989 square feet. D=3.25 per cent.	30 50 70 90 110 130	101 101 102 104 108 111	183. 9 175. 5 177. 8 175 174. 7 174. 1	191 185, 5 191 190 190, 5 189, 3	187. 4 180. 5 184. 4 182. 5 182. 6 181. 7	7. 1 10 13. 2 15 15. 8 15. 2	86. 4 79. 5 82. 4 78. 5 74. 6 70. 7	103 101. 2 103. 5 104. 5 105 106	721 1,000 1,351 1,550 1,640 1,592	834 1, 258 1, 641 1, 975 2, 198 2, 250	1. 355 3. 674 7. 087 11. 64 17. 22 23. 87	1.369 3.78 7.162 11.77 17.400 24.14	19. 58 29. 54 38. 53 46. 38 57. 61 52. S3	. 494 1. 012 2. 047 3. 736 6. 218 9. 682	39. 65 29. 18 18. 82 12. 41 8. 3 5. 46
2-inch G. & O. 176505 W=11.90 pounds. A=1.00 square foot. D=6.45 per cent.	30 50 70 90 110 130	91 92 95 98 101 110	197.8 190 188 180.4 195.5 185.2	190. 5 181 178 170. 5 183 175. 2	194. 1 185 183 175. 4 189. 2 180. 2	7.3 9 10 9.9 12.5 10	103. 1 93 88 77. 4 88. 2 70. 2	105.6 99 101 100.2 101 102.2	721 834 945 928 1,182 956	699 896 1, 062 1, 198 1, 341 1, 362	1. 445 3. 964 7. 587 12. 42 18. 42 25. 57	1. 445 3. 964 7. 587 12. 42 18. 42 25. 57	16, 41 21, 04 24, 94 28, 13 31, 49 31, 98	. 271 . 788 1, 778 3, 445 5, 97 9, 532	60. 6 26. 71 14. 02 8. 17 5. 28 3. 36
Lamblin radiator	30 50 70 90 110 130	92 94 96. 5 100 103 109	191. 5 186. 2 185 179. 2 187 184. 5	181 173 169 163 168 166	186. 2 179. 6 177 171. 1 177. 5 175. 2	10.5 13.2 16 16.2 19 13.5	94.3 85.6 80.5 71.1 74.5 66.3	106. 1 106. 4 106. 1 106. 1 106. 9 105. 7	1, 114 1, 404 1, 698 1, 719 2, 031 1, 956	1, 182 1, 640 2, 110 2, 418 2, 729 2, 950	1. 955 5. 614 11. 167 18. 72 28. 12 39. 67		27. 75 38. 51 49. 54 56. 77 64. 07 69. 26	1. 039 2. 22 4. 144 7. 139 11. 477 17. 564	26.72 17.35 11.96 7.94 5.58 3.94
Lamblin radiator W=66.3 pounds. A=full size. D=0.	$\begin{bmatrix} 30\\ 50\\ 70\\ 90\\ 110\\ 130\\ \end{bmatrix}$	96 97 100 002 109 115	181. 4 186. 5 184. 5 181. 3 180. 8 177	177 179. 5 176. 172 171. 5 168. 5	179. 2 183 180. 2 176. 5 176. 1 172. 7	4.4 7 8.5 9.3 9.3 8.5	83. 2 86 80. 2 74. 6 67. 1 57. 7	198 199 203 205 206 203	871 1,393 1,725 1,906 1,860 1,726	1, 048 1, 620 2, 150 2, 558 2, 770 2, 990	1. 955 5. 614 11. 167 18. 72 28. 12 39. 67		24. 61 38. 04 50. 48 60. 06 65. 04 70. 21	1.038 2.219 4.144 7.137 11.477 17.564	23. 71 17. 15 12. 18 8. 43 5. 67 3. 99

W=weight of 1 square foot frontal area of core with water; A=frontal area of core tested; D=percentage. B. t. u. deduction due to header area considered as equivalent to core area.
 Note area correction and deduction of percentage due to headers.
 Headers were not removed; results not comparable with other tests.

HP. absorbed=(RV+1/6WV)0.002664, where V=air speed in M. P. H.; R=resistance per unit frontal area-pounds; W=weight of full radiator per unit frontal area-pounds; 6=L/D of airplane—assumed. HP. dissipated=0.02348×(B. f. u.).

TABLE I.—FIGURE OF MERIT—Continued

			Te	mperat	ure in d	egrees	F.	4 44	B. t. u.				HP.	= ,		: ==
Name of radiator with miscellaneous data	Air speed M.P. H.	f	Water fulet	Water outlet	Mean	Dif- fer- ence	differ- ence,	Rate of flow, pounds of water per minute	dissi- pated per minute for I square foot	ence be- tween mean	Total resist- ance of radiator core, in pounds	Total resistance per square foot of frontal area = R	pated	HP, absorbed per square foot of frontal area	Figure of merit = H/P	
υ=υ.	30 50 70 90 110 130	89 90 93.5 98 102 108	185. 5 188. 3 181. 2 180. 5 189. 5 178	182 183 176 173.5 181 171	183. 7 185. 6 178. 1 177 185. 2 174. 5	3.5 5.3 6.2 7 8.5 7	94. 7 95. 6 84. 6 79 83. 2 66. 5	298 297 302 302 302 302 302	1, 043 1, 574 1, 872 2, 114 2, 567 2, 114	1, 104 1, 646 2, 215 2, 680 3, 085 3, 180	1. 955 5. 614 11. 167 18. 72 28. 12 39. 67		25. 92 38. 65 52 62. 93 72. 44 74. 67	1. 038 2. 219 4. 114 7. 137 11. 477 17. 564	24. 95 17. 42 12. 54 8. 82 6. 31 4. 25	
Lamblin radiator	30 50 70 90 110 140	96. 8 97. 7 101. 2 96. 8 102. 2 113	179. 5 180 178. 5 183. 8 180. 2 184	176. 5 175. 8 173. 4 177 173. 2 177	178 177. 9 175. 9 180. 4 176. 7 180. 5	3 4.2 5.1 6.8 7	81. 2 80. 2 74. 7 83. 6 74. 5 67. 5	372 368 375 378 368 367	1, 116 1, 546 1, 913 2, 571 2, 576 2, 569	1,374 1,930 3,560 3,080 3,455 3,805	1. 955 5. 614 11. 167 18. 720 28. 120 39. 67		32, 26 45, 32 60, 11 72, 32 81, 12 89, 34	1.038 2.219 4.144 7.187 11.477 17.564	31. 05 20. 45 14. 51 10. 13 7. 06 5. 08	
2-inc	70 90 110 140	91 92.5 95 97 105 108	182 188, 8 169, 5 186 182, 5 187, 5	177 182 180. 5 176 173 177. 2	179. 5 185. 4 185 181 177. 7 182. 8	5 6.8 9 10 9.5 10.3	88. 5 92. 9 90 84 72. 7 74. 8	102.4 112 104 102.4 104.5 101.2	467 696 854 934 907 951	528 749 949 1,112 1,248 1,271	1. 635 4. 514 8. 757 14. 42 21. 52 30. 17	1. 635 4. 514 8. 757 14. 42 21. 52 30. 17	12. 39 17. 59 22. 28 26. 11 29. 3 29. 84	. 251 . 301 1. 913 3. 818 6. 747 10. 969	49. 4 21. 95 11. 65 6. 85 4. 35 2. 72	
5-inch G. & O. 176502 <i>W</i> =24.4 pounds.	30 50 70 90 110 140	96 98 100 103 108 114	188, 5 185, 5 183, 8 187 184, 5 185	182.5 178 174 174.5 171.5 172	185, 5 181, 7 178, 9 180, 7 178 178, 5	6 7. 5 9. 8 12. 5 13 13	89. 5 83. 7 78. 9 77. 7 70 64. 5	101 100. 5 101. 5 101. 2 101. 6 103. 5	588 739 963 1,230 1,282 1,308	657 883 1, 220 1, 584 1, 832 2, 029	1. 435 4. 114 8. 157 13. 57 20. 52 28. 68	1. 453 4. 166 8. 25 13. 73 20. 78 29. 02	15. 43 20. 73 28. 65 37. 19 43. 02 47. 64	. 44 1. 097 2. 297 4. 267 7. 281 11. 459	35. 05 18. 91 12. 48 8. 72 5. 91 4. 16	

11.22.12

TABLE II.—FIGURE OF MERIT FOR HEINRICH STREAMLINE RADIATOR 1

			Tem	perature	in degre	es F.							HP.		
mařæ		Air in tunnel	Water inlet	Water outlet	Mean	Differ- ence	Mean differ- ence, air and water	Rate of flow, pounds of water per minute	B. t. u. dissi- pated per minute for I square foot of radiat- ing sur- face= C	C per 100° differ- ence between mean water and air	Total resist- ance of radiator, in pounds	Total resist- ance per square foot of radiating sur- face = R	dissipated per 100° difference of temperature per square foot of radiating surface = H¹	HP. absorbed per square foot of radiating surface = P ²	Figure of merit = H P
								8 by 8	foot tunn	eI					
	30	100.0 98.0 98.2 98.6 99.0 99.7	183. 0 168. 0 173. 0. 181. 0 181. 0 182. 2	176. 5 161. 5 166. 0 173. 9 174. 5 176. 0	179.7 164.7 169.5 177.5 177.7 179.1	6.5 6.7 7.1 6.2	79.7 66.7 71.3 78.9 78.7 . 79.4	358 366 364 363 362 362	11. 3 11. 5 12. 4 12. 5 11. 4 10. 9	14. 2 17. 2 16. 9 15. 9 14. 5 13. 8	2. 483	0.0120	$\left\{\begin{array}{c} 0.333\\ -404\\ .397\\ .373\\ .341\\ .324\end{array}\right.$	0.0122	27.3 33.1 32.5 30.6 28.0 26.6
	50	100.6 107.0 110.0 112.0 114.0 115.0	183.5 184.5 185.0 186.0 187.0 187.4	174.5 175.5 176.0 177.0 178.1 179.2	178.7 180.0 170.5 171.5 182.6 183.3	9.0 9.0 9.0 9.0 8.3	72. 7 73. 0 60. 5 59. 5 68. 6 68. 3	365 364 365 366 366 376	15. 9 15. 9 15. 9 15. 9 15. 8 15. 1	21. 9 21. 8 26. 3 26. 7 23. 2 23. 3	7. 269	. 0353	.515 .512 .618 .627 .545 .547	.0232	22. 2 22. 1 26. 6 27. 1 23. 5 23. 6
	70	115.0 116.0 120.0 123.0 128.0 130.0	182.0 179.0 181.0 181.7 183.0 184.0	173.1 170.2 171.9 173.5 175.0 176.0	177. 6 174. 6 176. 5 177. 6 179. 0 180. 0	8.9 8.8 9.1 8.0 8.0	62. 6 58. 6 56. 5 54. 6 51. 0 50. 0	364 363 365 364 362 365	15.7 15.5 16.1 14.5 14.2 14.2	25. 2 26. 5 28. 5 26. 6 27. 9 28. 5	15. 410	.0749	. 592 . 623 . 669 . 625 . 655 . 670	.0397	14.8 15.7 16.8 15.7 16.5 16.9
					, ,			4 by 8	foot tunr	ıel					·
Closed	30	90. 0 92. 0 92. 1 92. 2 92. 5 92. 5	183. 0 183. 5 180. 0 180. 0 181. 0 182. 5	176. 0 176. 5 173. 3 173. 0 174. 0 175. 6	179. 5 180. 0 176. 7 176. 5 177. 5 179. 0	7. 0 7. 0 6. 7 7. 0 7. 0 6. 9	89. 5 88. 0 84. 6 84. 3 85. 0 86. 5	370 371 372 373 373 373	12.6 12.6 12.1 12.7 12.7 12.7	14. 1 14. 3 14. 3 15. 1 14. 9 14. 5	2.483	0.0120	331 .336 .336 .355 .350 .341	.0122	27. 1 27. 5 27. 5 29. 1 28. 1 27. 9
CIC	50	94. 0 94. 5 95. 0 95. 5 96. 0 96. 5	181. 5 180. 2 181. 1 180. 0 182. 0 183. 7	172. 0 170. 1 171. 5 170. 8 172. 2 175. 1	176. 7 175. 1 176. 3 175. 4 177. 1 179. 4	9.5 10.1 9.6 9.2 9.8 8.6	82.7 80.6 81.3 79.9 81.1 82.9	377 376 376 376 376 376	17. 4 18. 4 17. 5 16. 8 17. 9 15. 7	21. 1 22. 8 21. 5 21. 0 22. 1 19. 0	7.269	.0353	.496 .535 .505 .493 .519 .446	. 0232	21. 4 23. 1 21. 8 21. 3 22. 3 19. 3
	70	102.0 102.5 103.0 103.5 104.0 104.5	184. 0 184. 2 183. 0 181. 2 181. 2 180. 7	172.0 171.8 171.0 169.1 169.5 169.8	178. 0 178. 0 177. 0 175. 1 175. 3 175. 3	12.0 12.4 12.0 12.1 11.7 10.9	76. 0 76. 5 74. 0 71. 6 71. 3 70. 7	379 380 379 378 378 378	22. 1 22. 9 22. 1 22. 2 21. 5 20. 0	29. 1 30. 0 29. 9 31. 0 30. 2 28. 3	15.410	.0749	.684 .705 .702 .727 .709 .665	.0401	17. 1 17. 6 17. 5 18. 1 17. 7 16. 6
	90	106.1 108.0 108.4 110.0 111.3 111.6	180. 1 180. 0 179. 2 179. 0 179. 8 181. 7	167. 5 167. 1 166. 5 167. 0 168. 0 169. 1	173.8 173.6 172.8 173.0 173.9 175.4	12.6 12.9 12.7 12.0 11.8 12.6	67. 7 65. 6 64. 4 63. 0 62. 6 63. 8	378 380 381 381 381 380	23. 1 23. 8 23. 5 22. 2 21. 8 23. 3	34. 2 36. 3 36. 5 35. 3 34. 8 36. 6	25. 950	.1260	.803 .852 .858 .829 .818 .859	. 0638	12.6 13.4 13.4 13.0 12.8 13.5
	110	114.0 116.2 118.0 119.3 120.3 120.2	182. 0 182. 0 181. 7 181. 5 182. 0 183. 0	169. 3 169. 9 170. 0 170. 0 171. 0 171. 8	175. 6 175. 8 175. 8 175. 7 176. 5 177. 4	12.7 12.1 11.7 11.5 11.0 11.2	61. 6 59. 6 57. 8 56. 4 56. 3 57. 2	377 378 392 393 393 393	23. 3 22. 2 22. 3 22. 0 21. 0 21. 3	37.8 37.3 38.6 39.0 37.3 37.3	39. 650	.1926	.888 .876 .907 .916 .876	.0976	9.1 9.0 9.3 9.4 9.0 9.0
	130	114. 1 118. 2 121. 1 124. 0 126. 3 128. 4	178. 0 186. 0 184. 2 182. 0 181. 2 181. 5	164. 1 170. 0 172. 2 170. 2 169. 9 171. 0	171. 1 178. 0 178. 2 176. 1 175. 6 176. 2	13.9 10.0 12.0 11.8 11.3 10.5	57. 0 59. 8 57. 1 52. 1 49. 3 47. 8	384 385 385 385 385 386	25. 9 29. 9 22. 4 22. 1 21. 1 19. 7	45.5 50.0 39.3 42.5 42.8 41.3	56. 750	. 2755	1.068 1.173 .923 .999 1.005 .970	.1437	7.4 8.2 6.4 6.9 7.0 6.7
Ореп	130	100.0 104.0 108.0 112.0 114.0 116.0	184. 2 180. 7 182. 2 182. 0 182. 5 182. 7	176. 0 172. 5 174. 0 175. 2 176. 0 176. 5	180. 1 176. 6 178. 1 178. 6 179. 2 179. 6	8.2 8.2 8.2 7.8 6.5 6.2	81. 1 72. 6 70. 1 66. 6 65. 2 63. 6	388 385 390 387 388 388	15. 4 15. 3 15. 5 14. 6 12. 2 11. 7	19. 2 21. 1 22. 1 21. 9 18. 7 18. 4	}				

I Supplied data: Radiating surface=206 square feet. Weight of radiator, dry=113 pounds; weight of radiator, full=173 pounds. I Horsepower dissipated=0.02345 \times (B. t. u.). Horsepower absorbed=0.02364 (RV+1/6WV) where V=air speed in M. H. P. R=resistance per square foot of radiating surface—pounds. W=weight of full radiator per square foot of radiating surface—pounds. 6=L/D of airplane—assumed.

Table III.—FIGURE OF MERIT FOR HEINRICH WING RADIATOR NO. 11

[9 fins, 1-inch pitch]

1											*		_	
Air speed M. P. H.	Air in tunnel	Water inlet	nperatur Water outlet	e in degr	Difference	Mean differ- ence air and water	Rate of flow in pounds of water per minute	B. t. u. dissi- pated per minute per square foot of	C per 100° difference between water and air	Total resistance of radiator in pounds 2	Total resistance per square foot of radiating surface = R	HP. dissipated per 100° difference of temperature per square foot of radiating surface = H¹	HP. absorbed per square foot of radiating surface P:	Figure of merit = H/P
50	90. 0 90. 0 90. 0 90. 0 90. 5 90. 5	181. 8 182. 2 182. 3 182. 7 183. 0 183. 0	180. 0 180. 2 180. 5 180. 8 181. 0 181. 2	180. 9 181. 5 181. 4 181. 8 182. 0 182. 1	1.8 2.0 1.8 1.9 2.0 1.8	90. 9 91. 5 91. 4 91. 8 91. 5 91. 6	217 217 212 213 217 217	20. 2 21. 4 19. 7 20. 9 22. 4 20. 2	22. 2 23. 4 21. 6 22. 8 24. 5 22. 1	0.686	0. 0355	0.519 .549 .507 .535 .575 .519	0. 0228	22. 8 24. 1 22. 2 23. 5 25. 2 22. 8 17. 2 17. 8
70	92.0 92.5 93.0 93.5 94.0 94.5 96.0	182. 7 182. 4 182. 2 181. 8 181. 5 181. 0 180. 7	180.5 180.1 179.9 179.6 179.4 179.0	181.6 181.3 181.1 180.7 180.5 180.0 179.5	2.2 2.3 2.2 2.1 2.0 2.5	89. 6 88. 8 88. 1 86. 7 86. 5 85. 5	217 213 213 217 218 219 219	20, 2 24, 7 25, 3 25, 3 24, 7 23, 7 22, 6	27.6 28.5 28.8 28.5 27.4 26.4	1.275	. 0659	.648 .669 .677 .669 .643 .620	. 0376	18.0 17.8 17.1 10.5
90	97. 0 98. 0 99. 5	180. 7 180. 3 180. 4 180. 7 181. 0 180. 9 181. 0	178. 2 177. 8 177. 9 178. 2 178. 5 178. 5 178. 5	179.5 179.1 179.2 179.5 179.8 179.7	2,55 2,55 2,54 2,54 2,5	83.5 82.1 81.2 80.0 79.3 78.7 73.8	219 217 217 211 212 212 217	28.3 28.0 28.0 27.3 27.4 26.3	33. 9 34. 2 34. 6 34. 1 34. 6 33. 4 38. 0	2, 030	.1049	.796 .803 .813 .801 .813 .785 .893	. 0577	13.8 13.9 14.1 13.9 14.1 13.6 10.6
1 .	1	181. 1 181. 0 180. 8 180. 8 181. 0 180. 9	178.6 178.5 178.3 178.3 178.3 178.4	179, 9 179, 8 179, 6 179, 6 179, 8 179, 7	2.5 2.5 2.5 2.5 2.5 2.5 2.5	72. 4 70. 8 70. 1 69. 6 69. 3 62. 7	217 217 217 217 219 219	28. 0 28. 0 28. 0 28. 0 28. 3 28. 3	38. 7 39. 6 40. 0 40. 3 40. 9 45. 2	2. 935	. 1517	909 930 939 946 961 1,061	. 0843	10.8 11.0 11.1 11.2 11.4
. [(112. 0	181. 0 180. 9 181. 0 181. 2 181. 4 183. 0	178, 5 178, 5 178, 8 179, 0 179, 2 180, 2	179. 8 179. 7 179. 9 180. 1 180. 3 181. 6	2.5 2.4 2.2 2.2 2.2 2.8	61.3 59.7 58.4 56.6 55.3 69.6	219 217 219 219 219 219	28. 3 26. 9 24. 9 24. 9 24. 9 31. 7	46, 2 45, 1 42, 6 44, 0 45, 1 45, 6	4.000	. 2068	1. 083 1. 058 1. 000 1. 033 1. 058 1. 070	.1187	9.1 8.9 8.4 8.7 8.9
140	112, 0 117, 0 122, 0 125, 0 127, 5 129, 0	182. 8 182. 2 182. 2 182. 2 182. 4 182. 6	180. 0 179. 8 180. 0 180. 2 180. 5	181. 4 181. 0 181. 1 181. 3 181. 6	2.8 2.4 2.2 2.2 2.1	64. 4 59. 0. 56. 1 53. 8 52. 6	217 217 217 213 213	31. 4 26. 9 24. 7 24. 2 23. 1	48. 8 45. 6 44. 0 45. 0 43. 9	4, 580	. 2363	1. 070 1. 146 1. 070 1. 033 1. 057 1. 030	.1388	8.2 7.7 7.4 7.6 7.4

¹ Weight of radiator, dry =10.90 pounds; weight of radiator, wet=15.78 pounds. Radiating surface=19.35 square feet.
 ¹ Faired resistance values.
 ³ HP. dissipated=0.02348×B.t.u.
 ⁴ HP. absorbed=0.002664 (R V+ ¼WV). V=air speed in M. P. H. R=resistance per square feet, of radiating surface in pounds. W=weight of full radiator per square foot of radiating surface in pounds. 6=L/D of airplane, assumed.

TABLE IV .- FIGURE OF MERIT FOR HEINRICH WING RADIATOR NO. 31

[6 Fins, 11/2" pitch]

		Ten	iperature	in degre	ees F.	<u>.</u>			-			HP. dis- sipated		
Air speed M.P.H.	Air in tunnel	Water inlet	Water outlet	Mean	Differ- ence	Mean differ- ence, air and water	Rate of flow in pounds of water per minute	B. t. u. dissipated per min- ute per square foot of radiating surface C	C per 100° differ- ence between mean water and air	Total resist- ence of radiator in pounds 3	Total resistance per square foot of radiating surface = R	per 100° difference of temperature per square foot of radiating surface = H 1	HP. absorbed per square foot of radiating surface = P1	Figure of merit = EIP
50	\$7.0 87.5 87.5 88.0 88.0 88.5	175. 5 176. 9 180. 6 180. 0 180. 9 182. 1	173.8 175.1 179.1 178.6 179.3 180.4	174.7 176.0 179.9 179.3 180.1 181.2	1.7 1.8 1.5 1.4 1.6 1.7	87.7 89.0 92.4 91.3 92.1 91.9	161 155 155 158 158 158	21. 2 21. 6 18. 0 17. 2 19. 6 20. 8	24. 2 24. 3 19. 5 18. 8 21. 3 22. 6	0. 493	0. 0382	0.568 .571 .453 .441 .500 .531	0. 259	21.9 22.1 17.7 17.0 19.3 20.5
70	90.0 90.5 91.0 91.5 92.0 92.5 94.5	183.3 183.9 183.8 183.7 183.6 183.0 182.4	181. 0 181. 7 181. 5 181. 5 181. 3 180. 9 179. 9	182. 2 182. 8 182. 7 182. 6 182. 5 182. 0 181. 2	2.3 2.2 2.3 2.2 2.3 • 2.1 2.5	92. 2 92. 3 91. 7 91. 1 90. 5 89. 5 86. 7	155 155 155 151 155 155 155	27. 7 26. 5 27. 7 25. 8 27. 7 25. 2 30. 1	30. 1 28. 7 30. 2 28. 3 30. 6 28. 2 34. 7	.917	.711	707 .674 .709 .664 .719 .662 .815	.0425	16.6 15.9 16.7 15.6 16.9 15.6 12.6
90	96. 0 97. 0 97. 5 98. 0 98. 5	181. 9 181. 2 180. 6 180. 4 180. 0 180. 0	179.4 178.8 178.2 178.0 177.0	180. 7 180. 1 179. 5 179. 3 178. 3	2.5 2.4 2.4 2.4 3.0 2.8 2.5	84. 7 83. 1 82. 0 81. 3 79. 8 76. 6	155 155 155 155 151 - 155	30, 1 28, 9 28, 9 28, 9 35, 2 33, 7	35. 6 34. 8 35. 3 35. 6 44. 1	1.459	. 1131	.836 .817 .829 .836 1.035 1.033	.0646	12.9 12.6 12.8 12.9 16.1
110	103.5 104.5 106.0 107.5 108.5 112.5	179.5 179.0 179.0 178.8 178.6	177. 0 176. 7 176. 5 176. 3 176. 2 176. 8	178. 3 177. 9 177. 8 177. 6 177. 4 178. 2	2.3 2.5 2.5 2.4 2.7	74.8 73.4 71.8 70.1 68.9 65.7	155 155 155 155 155 155	30. 1 27. 7 30. 1 30. 1 28. 9 32. 5	40.3 37.8 41.9 43.0 42.0 49.5	2.114	1.639	.946 .887 .984 1.010 .986 I.162	.939	10.1 9.4 10.5 10.8 10.5 8.8
130	115.0 119.0 120.5 122.0 124.0 127.0	182. 0 183. 2 184. 4 183. 7 183. 7	179. 1 180. 5 181. 8 181. 3 181. 3 182. 0 182. 1	180.6 181.9 183.1 182.5 183.5 183.2 183.4	2.9 2.7 2.6 2.4 2.4 2.4	65. 6 62. 9 62. 6 60. 5 59. 5 55. 2 53. 4	155 155 155 155 148 155 144	34.9 32.5 31.3 28.9 28.9 28.9 27.9	53. 2 51. 7 50. 0 47. 8 48. 6 52. 4 52. 3	2.879	.2231	1. 248 1, 214 1. 173 1. 122 1. 141 1. 230 1. 228	. 1315	9.529 9.529 8.88 8.60 8.60
140	130.0 132.0 133.5 135.5 137.0	184.6 185.0 185.8 185.9 185.8	182.1 182.6 183.5 183.9 183.9	183. 4 183. 8 184. 7 184. 9 184. 9	2.5 2.4 2.3 2.0 1.9	51. 8 51. 2 49. 4 47. 9	158 158 158 158 158	27, 9 29, 4 28, 2 24, 5 23, 3	56.8 55.1 49.6 48.7	3. 290	. 2550	1. 228 1. 333 1. 293 1. 154 1. 143	.1535	8.7 8.0 8.4 7.5 7.4

TABLE V.—FIGURE OF MERIT FOR CURTISS RADIATOR1

[Shutter open]

Air speed (M. P. H.)	Total resistance of radiator a (pounds)	HP. dissipated per 100° of temperature = H;	HP. ab- sorbed=P	Figure of merit of =H/P
30	6. 11	56. 91	2. 62	21.71
50	16. 50	99. 39	5. 74	17.31
70	31. 43	141. 45	10. 84	13.05
90	51. 05	175. 44	18. 63	9.42
110	75. 19	197. 22	29. 87	6.61
130	103. 79	217. 65	45. 21	4.81

¹ Weight of radiator, dry=8.03 pounds, weight of radiator, wet=12.03 pounds. Radiating surface=12.00 square feet.

Faired resistance values.

HP. dissipated=0.02343×B.t.u.

HP. absorbed=0.02664 (RV+1/6WV). V=air speed in M.P.H. R=resistance per square foot of radiating surface in pounds. W=weight of full radiator per square foot. of radiating surface in pounds. 6=L/D of airplane, assumed.

Weight of radiator, dry=105.6 pounds;
 Resistance values were computed from
 Values for H were taken from 9-inch neglecting effect of header area.

^{. :} wet=159.3 pounds; frontal core area=3 square feet.
. : faired curve.
. : tests in Report No. 183, and increased in proportion to the change in core area,

TABLE VI.—WATER-PRESSURE DROP INSIDE RADIATOR FOR DIFFERENT RATES OF FLOW

[Pressure head—inches of water]

Water flow pounds per minute	U.S. Cartridge, 9-inch	U.S. Cartridge, 4-inch	G. & O. 176504	Rome Turney	G. & O. 176503	G. & O. 176507	G. & O. 176506	G. & O. 176505	G. & O. 17502
40 60 80 100 120 140 160 180	2. 38 5. 05 8. 62 13. 10 18. 40 24. 50 31. 50 39. 30	2. 52 5. 45 9. 35 14. 25 20. 10 27. 00 34. 50 43. 00	1.80 3.86 6.60 10.00 14.00 18.80 24.00 29.80	2. 65 5. 65 9. 75 14. 80 21. 00 28. 00 36. 00 44. 80	1, 55 3, 45 6, 10 9, 50 13, 60 18, 60 24, 20 30, 50	1, 60 3, 60 6, 45 10, 10 14, 50 20, 00 26, 00 33, 00	2. 47 5. 55 9. 90 15. 50 22. 40 30. 50 39. 50 50. 00	6. 0 13. 5 24. 0 37. 5 54. 0 73. 8 96. 0	1. 62 3. 48 6. 00 9. 10 12. 90 17. 20 22. 00

FOR LAMBLIN RADIATOR

	 								~
Water flow Pressure drop	150 21.9	175 30.0	200 38.8	250 60. 5	300 87.0	350 118	400 145	450 195	

TABLE VII.—PRESSURE DROP IN RADIATOR FOR VARIOUS RATES OF FLOW

Rate of flow in pounds of water per minute	Pressure drop in radiator in inches of mercury
HEINRICH RA	DIATOR NO. 1
(9 FINS, 1-II	NCH PITCH)
0	. 0
145	2.60
189	4.00
224	5.45
248	6.80
HEINRICH RA	DIATOR NO. 3 NCH PITCH)
0	0
84	1.90
120	3.26
155	5.40
168	6.14
189	7.60
216	9.50

¹ Temperature of water=180° F.